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Generalized lattice Boltzmann algorithm for the flow of a nematic liquid crystal
with variable order parameter
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A lattice Boltzmann(LB) scheme is described, which recovers the equations developed by Qian-Sheng for
the hydrodynamics of a nematic liquid crystal with a tensor order parameter. The standard mesoscopic LB
scalar density is generalized to a tensor quantity and the macroscopic momentum, density, and tensor order
parameter are recovered from appropriate moments of this mesoscopic density. A single lattice Boltzmann
equation is used with a direction dependent Bhatnagar, Gross, and @6d{ collision term, with additional
forcing terms to recover the antisymmetric terms in the stress tensor. A Chapman-Enskog analysis is presented,
which demonstrates that the Qian-Sheng scheme is recovered, provided a lattice with sixth-order isotropy is
used. The method is validated against analytical results for a number of cases including flow alignment of the
order tensor and the Miesowicz viscosities in the presence of an aligning magnetic field. The algorithm
accurately recovers the predicted changes in the order parameter in the presence of aligning flow, and mag-
netic, fields. Preliminary results are given for an extension of the method to model the interface between
isotropic and nematic fluids.
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[. INTRODUCTION also a matter of current interest and results have been re-
ported using both lattice Boltzmarid7] and conventional
The lattice BoltzmanriLB) method has been extensively solvers[18] of the equations for nematodynamics in the pres-
studied as a mesoscopic method of simulating isotropic fluence of a variable order parameters. , ,
ids (e.g., Refs[1—4]). The strengths of the method lie in The pnentauonal_ordermg of t_he mole_cules in the nematic
modeling flow in complex geometrig®.g., Ref.[5]) or in phase is characterized by a director fiefg,(x,t), a unit

multicomponent flow(e.q., Refs[6.7]). Recently, a number vector that essentially defines the “average orientation” of

f LB sch h b developed he f the molecules. However, the nematic ordering is more fully
of LB schemes have been developed to represent the flow Qb5 acterized by a traceless and symmetric order tensor
anisotropic fluids such as liquid crystdi,9].

. -1 as i ) Q.- In this work, for simplicity, we assume that the direc-
Materials that exhibit liquid crystal phases have anisomettor is confined to a two-dimensional plane, and hence that

ric moleculeqg 10,11 and nematic liquid crystals are of par- Q. May be written in the form

ticular interest because of their application in display de-

vices. There is also increasing interest in modeling liquid Qup(X,1)=S(2N,Np= Oyp). @

CryStal colloids in which colloidal partiCleS are embedded inThe principa| eigenvector dpaﬁ is the director and the prin-

a nematic phasfl2]. The colloidal particles interact through cipal eigenvalueS(x,t) is the scalar order parameter.

the distortions and defects that they generate in the nematic The scheme proposed by Cageal. [8] to recover the

elastic field. The forces between the particles and the dynaniricksen, Leslie, and ParodELP) equationg10] used two

ics of their motion is accessible to experiment. Poulin ~ coupled LB equations. These equations govern the con-

et al. [13]). As a consequence of these additional colloidaltinuum fluid dynamics of an incompressible nematic with an

interactions, the particles rearrange themselves into neRfder paramete§, which is both position and timsdepen-

structures and the LB method provides a particularly effec-dem In the schemgs], one of the LB equations carried the

tive way of dealing with the complex boundary conditions in momentum and the second carried a vector density corre-

sponding to the director field. The Dennistat al. [9
such problems. The method can recover both the nematost 'hemegis also based on two coupled lattice Bol[tz]mann

ics and nematodynamics of these phases and hence the dnemes, one of which carries a momentum density and the
namics of the colloidal phase can be captured and this hagcond carries a tensor density from which the macroscopic
been achieved with an earlier LB method developed by thgyder tensor can be recovered. This latter scheme recovers
authors[8,14]. the Beris-Edwards equatiof$9] for the flow of a nematic
Additionally, the colloidal particles may be an isotropic liquid crystal with variable order parameter.

fluid and work is currently in progress to extend the two In the work presented in this paper, a third scheme is
phase LB algorithms that have been developed for isotropipresented that recovers the Qian-Shgt@ equations for the
fluids to describe a mixture in which one of the phases is dlow of a nematic liquid crystal with a variable scalar order
nematic liquid crystal. Preliminary results from this work are parameter. The scheme is based on a single LB equation that
presented later in the paper and are based on extensionsgoverns the evolution of a tensor density and from which
the method to recover a isotropic-nematic interface followingboth the macroscopic order and momentum evolution equa-
the macroscopic description of R¢$5,16. The hydrody- tions are recovered. It is worth noting that there have been a
namics associated with pair annihilation of line defects isnumber of different derivations of nematodynamics with
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variable order parameters with perhaps the earliest resultsy’ .=8,Q,,Q,,A,,+ BaAs+ BsQurPust BsQsuA ia
presented by Heg®21] and Olmsted and Goldba22]. The - Plicapepuy T PATp T P8 cauup T RGPy

recent work by Sonnet, Maffettone, and Virg28] provides +3m2Ngp= 11Qu, N, s+ 11Qp,N 0, (6)
the basis upon which the variety of schemes with a variable

order parameter may be compared. The Qian-Sheng equ&hereA,,z=73(d,uz+dgu,) is the symmetric velocity gra-
tions, such as the Beris-Edwards equations, reduces to tigent tensor. The elastic molecular field is given by

ELP formalism in the limit that the order parameter becomes

independent of time and position. There are a number of IFLdc IFLdG

: . hos=— : )
important differences between the scheme proposed here and @B Qup " 3(9,Qup)

that of Denniston. In the scheme described here, the target

equations are those of Qian-Sheng rather than Berisyhere, in the current work, the Landau—de Gennes free en-
Edwards, there is a single Boltzmann equation, the equilibergy is assumed to be of the form

rium distribution function is isotropiqas is expected on

physical grounds and the scheme is able to recover the full Fliac= %(aFin+ Llew AL2Q,,,Q,,)
tensorial coupling of the order tensor to the velocity gradient ’ o
tensor, from a single lattice distribution function. = BrQLQu Q-+ ¥r(Qy,)% (8)

The target macroscopic equations of the Qian-Sheng
scheme are summarized in Sec. II, the proposed schemewghereQ,z ,=d,(Q,z). Using this form of the free energy
described in Sec. lll, and a Chapman Enskog analysis of thand the definition of the molecular field, E), we find
scheme is presented in Sec. IV. A number of analytical re-
sults are developed from the Qian-Sheng equations in Sec. V, h,z= LlﬁiQaﬁ+ L2350, Quu— @rQupt3BeQ0,Qpu
which provide the basis for validation of the LB algorithm in

2
Sec. VI A. Preliminary results for a nematic-isotropic inter- ~47eQapQpy - ©)
face are presented in Sec. VI B and the conclusions are pre- " . o
sented in Sec. VII. The quantities\ andX\ , in Eq. (3) are Lagrange multipliers

that impose the constraints on the elastic molecular field,
which arise because the order teng@p; is symmetric
and traceless. For a three-dimensional system they have the

In this section we summarize the target macroscopi¢/alues
equations for the LB method. The two governing equations

Il. QIAN-SHENG FORMALISM

of the Qian scheme are the momentum evolution equation N=35(h,, = 3R, Na=384,0,,. (10
pDUg=dg(— P+ 005t ohst olp) () ThetermA,, in the first of Eqs(10) does not appear in the
Qian-Sheng equations, but is necessary in order to correct for
and the order tensor evolution equation the slight compressibility of the LB fluid. In the presence of
an external magnetic field, the free energy is assumed to be
IQup=h,s+h! 5= NBup— Eapyhy- (3y ~ augmented by a term of the form
— 10, _
It is shown by Qian that in the limit of constant order param- Fr=—2(x=x1)QasHHp, 1D

eter, the solutions of these equations are identical to those . . . . )
obtained from the ELP equations. Throughout this work weWhich gives an additional term in the molecular field of the
use the repeated index notation for summations over Cartégrm

sian indices. In the above equatiori®,=d;+u,d, is the WM =1y 1 H
convective derivativeR is the pressurariﬁ is the distortion ap~ 2Xalallps

stress tensor given by

(12)

wherex,= x|— x. is the anisotropy in the susceptibility. The

. T
IF Luc viscous molecular fieldh, ; is given by

d
o0 y=— 9 ;5 Q0 @
a(aaQ,u,V) a - ;B:%#ZAQB—’_M].NO([;’ (13)

fo . .
and Oap 1S the stress tensor associated W|th.an externall;ovhereNaﬁ is the corotational derivative defined by
applied field. In the current work we only consider an exter-

nally applied magnetic field for which the stress tensor is

N,z=0 +u,d - - ,
given by Landau and Lifshitg24] ap= 9 Qup T UpduQup™ Eaur®,Qup~ & pur®uQua

(14

1 1 C 1
‘TLB: — | HH g SHZ5,). 5) where the vorticityw 2(V><.g).
4 2 In order to develop a lattice Boltzmann scheme we rear-
range Eq.(6) by substituting from Eq(14) for the corota-
The viscous stress tensm;B is given by tional derivativeN,,z and obtain the form
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) (u2)? which in two dimensions is related @4z by Eq.(20). The
T ap=B1QupQuA vt | Ba— Dug Aup LB algorithm governing the evolution af;,; is taken to be
! of the form
+| Bs+ L Qu. AT B ! )Q A
5T 5 M2 | Ya B 6 s M2 |{p @
2 e 2 o Giap(r +6c; t+ 6):giaﬁ(£1t)+; giZiq)(Lvt)Miaﬁjp,v
M2
+ Z_M(haﬁ_ Saph ~ apuh ) T Qpulua + Piapt Xiaps (21
= Quun 5 1 Quu v € e QpuN - (15)  where g,z and x;,z are the forcing terms for the momen-

tum and order, respectively, and there is an implicit summa-
Equation(3) for the order tensor evolution can be cast in thetion over repeated Cartesian indices. The nonequilibrium dis-
form tribution function is given by

(negd_~ _ ~(0)
DtQaﬁ’:_ﬁAaﬁ—i_ihaﬁ_'— €aur® QVB+ EB y@ Qva glaﬁ glaﬁ glaﬁ, (22)
2 M1 pr pres I S . .

where the equilibrium distribution funcnogi(gi3 is taken to

1 be of the form
- _(5aﬁ)\ + SaB,U,)\,u,)l (16)

Ha () =851, 23
where we have set the inertial density of the fluldto zero. o 0
Equationg15) and(16) are the expressions recovered by the The distribution functiorf;”’ is assumed to be second order
LB scheme proposed below. After each time step, the madh the velocityu, and is determined in the usual way, by the
roscopic density, momentum, and the order tensor are recovequirements
ered from the LB tensor density. The gradients of the order
tensor are then used to construct the molecular field through p=> O pu = ¢ fO (24)
Eg. (9) and this modifies the dynamics through appropriate T oo et
forcing terms in the LB equation.

and Galilean invariance in the form

lll. THE LATTICE BOLTZMANN ALGORITHM

In order to recover both the momentum evolution E2). Z CiaCigliap=CEPBapt PUUg. (29
and the order tensor evolution E@) within a lattice Boltz-
mann scheme, the scalar density of a standard lattice Bolt74ence. we have
mann schemef;(r,t), is replaced by a tensor density
Jiap(r,t), wherei is the normal velocity index ana and 8
label either a two- or three-dimensional Cartesian basis. One Z Ofah=PSap. Z CiaGlap=PSugla- (26
can think of the tensor density as carrying information about
the ordering of that population of the fluid “element”on the |y Sec. 1V, it is shown that in order to recover the required
VelOCity link i, associated with a particular pOSition and time.tensor Coupiing of the order tensor to the Veiocity gradient
Hence the densities of a standard LB scheme have been ge@nsor it is necessary to have sixth order isotropy of the ve-
eralized to carry information about the order associated Wltrbcny tensors. In this Work, the required isotropy is achieved

the fluid in addition to the density and momentum. ~ by using a two-dimensional hexagonal lattice with three
The densityg;,4(r,t) is assumed to have the following speeds and coordination number ®Q13 for which the
moments: velocity vectorsc, are given by
={0,0},
PZEi gi,u,u' (17) Co { }

¢ =c{*1,0,,c{x1/2,+,3/2,
pUa= 2 Cialiuu (18) c,=c{0,+ 3}, c{+3/2,+ /3/2), 27)
the subscripts 0, 1, and 2 being associated with particles with

pSaB:E Jiag (190  velocity 0, ¢, and y3c, respectively. Imposing conditions
i (24) and(25) leads to the result

wheresS,, ; is an order matrix with unit trace, which is related
toQ Sf/ O =pS,at; 1+ 20,0t ——uu| S0
ap iap Bt cg avia 2C§ avp C§ aB | |1
Sa,ﬁ’: %(Qaﬁ+ 5a,8)1 (20) (28)
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where, in D2Q13},=11/25,t;=9/100, andt,=1/300 and IV. ANALYSIS OF THE ALGORITHM
the velocity of sounds=(3/10)*2. The collision operator is

A. Ch -Ensk i
taken to be of the form apman-£nskog expansion

In this section the key results of the Chapman-Enskog
S o tiCiste( 1 ” analysis are given, which demonstrate how the scheme de-
i

M I scribed in Sec. Il can be recovered from the LB algorithm
described in Sec. lll. We follow a standard Chapman-Enskog

analysis[2] and expand the density and the time derivatives

where thedirection dependentelaxation parameter is de- N the form
fined to be

faBjur—
Tj C2

s 7

(29

8"9)s 3
Ti= TO(1+ nOCi,u,Civ5MV+ 772Ci,u,CiVQ,uV)' (30) gla,B E glaﬁ ( 7)
This collision operator may be seen more transparently after

performing the contraction with the nonequilibrium distribu- o= E "0, . (39)
tion function as in Eq(21) n=0 ’

gl(gzq) We assume for the purposes of the following analysis that the
E M,aﬁmvgf;‘i“’ + 6Miyp5t OPiap,  (31) forcing termse;,z and x;,z can both be introduced at order
Ti 0O(6%) since both include gradlent terms in both the velocity
and director field(cf. Ref.[8]). The choice is supported by
the agreement of the Chapman-Enskog analysis with the
g(neq) measured simulation data; however the assumption relies
Jap (32 upon assumptions implicit in LB hydrodynamics in general.
7 Accordingly, it requires more careful analysis, which will be
undertaken in a later work.
The Chapman-Enskog expansion givesOs)

where

5m|a,8_ |OZ

is a correction to conserve mass. The term

tiCi, 1
5p|aﬁ’ C —= 2 jagj(l;,qu)( -2
7

S

(33) &t Ogla,B+CIM ,u,gl(gl)B_z gj(l) MIQ/BJMV (39)

includes a term in X, which is a correction to conserve and t0O(5%)
momentum and a term associated with a faet@, which is
explained at the end of Sec. IV A. The collision operator is
essentially a lattice Bhatnagar-Gross-Kro@8GK) colli-
sion operator(e.g., Ref.[2]) with a relaxation time that is
direction dependent. When written in the matrix form, the
collision operator is seen to lie between a conventional
LBGK operator and a linearized lattice Boltzmann scheme
(e.g., Ref[25]) although the usual circulant properties of the We now take moments of Eq$39) and (40) in order to
matrix associated with an isotropic fluid are destroyed by thgecover the macroscopic equations to which the algorithm is
direction dependent scattering in the method presented herequivalent. If we sum the two equations over indgxake
The momentum forcing term is given by the trace of the distribution density, and sum the resulting
equations, we recover

0
&t,lgi(a)ﬁ+(0’)t,0+ Ci,u,a,u,) |(g-y,)8+ E g“.w iaBjuv

=; g](i)vMiaﬁj/.Lv+ ¢iaB+Xiaﬂ' (40)

¢iaB:tiSaBCi,u(9VFv,u1 (34)
(at,0+ at,l)P""?;L(PUM):O’ (41)
where
which is the continuity equation to second order. If we mul-
1 po(heg—eapuN,) tiply Egs. (39) and (37) by c;,, sum over index, take the
Fap=— 73| — > +Quu(hug—€,p,N,) trace of the distribution density, and sum the resulting equa-
Cs H1 tions, we recover
_ _ _d _ f
QpulNua= 8 parh ) = Tap=0ap B (ot a(pun) +a, TO+TID + = Q(l)) =c20,F ,a,
and the angular forcing term is given by (42)
where
XiaB™ tlp[(saV}LQB#+8ﬂV}LQaﬂ)wV] [MZAaB Zhaﬁ
=2 ¢i,ciz0l 43
+268,5M+ 28,5, ] (36) ap 2 iaCipYiun (43)
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and
at,O(anﬁ) + at,l(anB) + ay(an,Buy) = EI XiaB-

Qgg: ; g](TL)VCiaCiBM PEE (44) 50

] Equation(50) combined with the forcing terr86) gives the
Further progress can be made by noting thatOt@), the  required evolution equatiof8). However, in order to obtain
lowest-order equatio(89) can be written in the form the result(50) it is necessary to suppress a contribution of the

form
Ci .Ci,
RIS L L

S 2| 3 catt) e
Substituting into Eq(44), this yields the result

at second order in the Chapman-Enskog analysis and this is
CinCiy achieved using the term associated with the faet@rin Eq.
Q(l)zz tiCiaCi ey ) Jd (pU ), (46) 9 q
ap & Bl o2 wy | CpuiPHy (33).

S The term(51) arises because conservation of mass and
where the unit trace property &, has been used. In order momentum alone are |nsuff|C|¢nt to co'nstraln.all the first-
to obtain an expression fﬂ%, we use Eqs(31) and (45) order v_alements of the dlstrlbutlon function. Thls_arlses _be-
to give, to first order in the velocity, cause in order to recover the_ re_quw_ed macroscopic equations,

the form of the equilibrium distribution function must satisfy
Egs.(26). However, the limitations on the definitions of the

(1) — moments of the distribution function lead to the result

iap™ — Ti

Ci.Ci,
u(—iggl——aﬂy)aﬂ<psaﬁuv>—-6nnaﬁ—-6maﬁ

(47)

where we have made the approximation, correcO{@?),
thatg(n5?=~g(L);. Termam;,, does not contribute t), as o
can be seen from Eq43), since it is included in the rest and,_as a consequence, the argument of the derivative in Eq.
mass. It can further be shown that the contribution from thed>1) IS nonzero.

term &p; . is essentially zero. We, therefore, find

Z Ciygiaﬁq&psaﬁuy (52)

B. Choice of LB parameters

stlzg: - Toz tiCiaCi g(1+ 76Ci 4Ci, S,y + 72Ci,Ci,Q,,) The following correspondence is found between the pa-
i rameters of the LB algorithm and the parameters of the target
scheme:
CiCig
x{( = —5m)axpugl, (48) 2o
S P, —
B4 4#1 pcs(l 27-0§)1

where we have substituted for the anisotropic relaxation pa-
rameterr; . Assuming that the velocity tensors wo )
Bs=—= 5+ m2pToCs,

Egynl)---anzz tiCial'”Ciozn (49)
1
M2 2

are isotropic up to sixth order, we recover the required form Ps 2 T 712P7oCs ®3
of the tensor coupling between the order tensor and the ve-
locity gradient tensor. where parametef= 1+ 7y(1+d/4) with d being the dimen-

Using these results it can be shown that, apart from theionality of the LB scheme, which is taken to be 2 for the
term associated witl,, the required momentum evolution results presented in Sec. VI. The viscosity set
equation(2) is recovered when Ed35) is used as the mo- {B,4,8s5,11.4-} Of the Qian scheme is recovered from the
mentum forcing term. The term i; could be recovered by parameter sefry, 79, 7,11,12} Of the LB algorithm. We
including a fourth-order velocity product in the anisotropic note from Qian 20] that B¢— B85= u, and this is seen to be
relaxation parameter but this would require the velocity ten<onsistent with the last two of Eq§53). There is one free
sors to be isotropic to eighth order. However, for simplicity, parameter in the LB scheme since we require to recover only
the term in B, is omitted in the results presented in this four Qian parameters from five LB parameters. The free pa-
paper. rameter is taken to b@y which is adjusted to place the LB

The order tensor evolution equation is recovered fromscheme in a stable region of its parameter space, as is ex-
Egs.(39) and(40) by summing over index and adding the plained below.
two resulting equations to give Equations(53) can be inverted to give
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A1 {(2Bs+ po) Qap=S(2naNg= ap), (58)
2=~ '

p5—4ui(Ba+pcl) where the time and position dependent quantiSeandn,,

) are the order parameter and director. If fo(&8) is substi-

48, + Apc?— M2 tuted into the free energy expressi@) and all the time and

Bat4pCs W spatial derivatives are removed, we find that the equilibrium
T0:8—2 (54 Landau—de Gennes free energy in the presence of a uniform
pCsé magnetic field is given by

In the absence of any anisotropic terms, the last expression in FE9 = o S+ 4ySh — 1S, x.H2 (59)

Eq. (54) becomesB,/p=c2(1—21,), which is equivalent to
the standard result for the kinematic viscosity in an LBGKyhere it is assumed that the director is parallel to the mag-
scheme. The relationship between the Qian parametefsetic field. The equilibrium order parameter, which mini-

{B4.Bs, 1,12} and the standard Leslie coefficients is givenmizes Eq.(59), has the form
in Sec. V.

We now establish an approximate criterion for the stabil- Sy=S,+S_ (60)
ity of the LB algorithm by considering a system that is
evolving towards a uniform density and velocity distribution With
at all points. The algorithm involves repeated application of

1/3
the collision operatorM; ,z;,,=M and ignoring forcing s _ 1 (27)(‘,,1H2+3\/§ 8a|35+277X§H4) 61)
terms, the nonequilibrium part of the distribution function is 12l oy T % ’
transformed at each time step according to the symbolic ) o
equation where the free energy parameterwill be negative in the
nematic phase and we choose the real solutior$,ofn the
g("ed— (1+M)grea, (55  limit H—0, we have
In order for the nonequilibrium part to decay to zero under 1 |-
successive applications of E@5), it is necessary that SO_§ 2y’ (62)
—1<(1+M)iapjur<1 (56)  which is the equilibrium order parameter that effectively

_ o . _ minimizes the Landau—de Gennes free energy in the absence
for all choices of indices. This equation may be recast as thgf director gradients. Using Eq58) with S set to'S,, we
stability criteria may follow the arguments given in Appendix B of Qian to
determine the relationship between the Leslie coefficients of

~2<M(piag)<0, [Mofipiag| <1 (57) a material and the viscosity coefficients used in the Qian
However, it should be remembered that the maltfixs a ;;hg:;fsé; is found for a system with the order tensor given
function of position, as a consequence of its depﬁdence on '
the order tensor through the anisotropic relaxation parameter B1=a1/(4S),  Ba=(112)(2as+ as+ ag)
7;. Hence, in a given simulation, conditios7) cannot be
guaranteed under all flow conditions. The criteria have been Bs=as5/(2S), Be=agl(2Sy)
achieved in the implementation of the algorithm described in
Sec. VI by explicit evaluation of all the nonzero elements of pm1=(az— az)/(SSé), o= (as+ a3)l(2S,), (63

the collision matrix prior to running the algorithm and after

making appropriate assumptions about the ordering in thehere Sy is the order parameter defined by E§2). In
system. Parameten, is then chosen to ensure that condi- simple shear flow between two parallel plates and in the
tions (57) are satisfied for all possible values of the directorabsence of any external field, E8) for the evolution of the

and scalar order parameter. order tensor can be solved to find the steady state value of
the angle of orientation and the order parameter. In the center

V. ANALYTICAL RESULTS FROM THE QIAN of the ﬂOW, remote from the Wa”S, the gradients in the order
FORMALISM tensor may be ignored and the director is found to lie at an

angle 6 with respect to the flow velocity, where
In this section we quote without detailed proof some ana-

lytical results that can be derived from the Qian formalism 4Suq
and that will be used in Sec. VI to validate the algorithm. cog20)=-— 1
Further discussion of the results and their significance is be-
ing prepared for a future publication. The results quoted irand this is directly equivalent to the result found for the ELP
Sec. VI have been derived for a system in which the directoequations, cos@=—y,/y, [10]. The order parameter is also
is confined to lie in a two-dimensional plane and the ordemodified in shear flow and is given by the solution of the

tensor for such a system may be written in the form cubic equation

(64)
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ax®+bx?+cx+d=0, (65) “ ' ' ' ' ' '
wherex=S? and T
35|

a=1024y?, b=256ay

30

c=16a®+ (u10yU,)%],  d=—(uodyu)%  (66)

25

egrees

This equation may be solved and to first order in the velocitys 2|
gradient the order parameter is found to be

2 72
Vo~ 165u1 10

S=5+ WMM (67)

and hence the order parameter increases as a consequence °, 2 s . s o = s
flow alignment. Finally we consider the Miesowicz viscosi- el

ties in a systgm with a variable order parameter_. The stress FIG. 1. Director orientatiord in a shear flow as a function of
tensc_)r evolution equation can be sollve'd for a S|mpI¢ Sheaﬁzl,ul. The continuous curve is Cos{e= —4Su /.

flow in the presence of a strongly aligning external field. If

the director is given byn,,n,}, the associated Miesowicz

Viscosity 71 is given by introduction of a molecular field term of formil2), it is

found that the director becomes fully aligned with the exter-

1 nal field and that the order parameter follows Eg8Q) with
77effz_z{sg[zaﬁa5+ ag)+ S az—ay+4anin an accuracy of better than 0.1%. These two results confirm
45, that the free energy correctly controls the dynamical equa-

tions through the associated molecular field. In principle,

2_ 2_ 2
+SS[as(2m— 1)+ (azt az)(n—ny) therefore, the effects of temperature could be introduced into

y

+ a5(2n§— 1)1}, (68) the model through the coefficients in the Landau—de Gennes
free energy.
where S is the order parameter in the flow ai®j is the The angle of alignment of the director in a shear flow in

equilibrium value of the order parameter defined in @&f). the absence of an external magnetic field is given by Eq.
In the limit that the order parameter is fixéce., S=S,), Eq.  (64). In order to test that the technique recovered this result,

(68) reduces to the standard results simulations were run with the free energy parameters (
=-0.0512, Be=0, y=0.01), chosen to give an equilib-
npar:%(a4+ azt ag), rium order parameter of 0.8 and the parametets (

=0.001, L,=0) selected to give nematic elastic behavior

Nperp=3(@a— ay+t as), (69)  equivalent to the one constant approximation. The LB pa-

) ~ rameters were chosen to beyE1.1000, 7,=0.3036, 7,
where 7,5, and 7,e., correspond to the director being =0.1565, u;=0.3823, u,= — 1.261, p=1.8). If the order

aligned paralleln={1,0} and perpendiculan={0,1}, tothe  parameterS, is assumed to be 0.8, these values recover the
flow. In the presence of both a velocity gradient and a strong;iscosity  ratios G,/ a,=—0.9556, asla,=—0.0144,

aligning field, the change in the order parameter is doml—a5/a4:0_5565 agla,=—0.4135), which are consistent
nated by the aligning field and is hence given to a goody;ip methoxy-benzylidene butyl-anilinéMBBA) at 25°C

approximation by Egqs60) and (61). [26].
With this choice of parameters, the angle of rotation of the
VI. RESULTS director is predicted to be 7° and this is recovered to an

In this section we first present results that validate thefceuracy of less than 1%. The parameters were then adjusted

proposed scheme and conclude by presenting some prelirﬁrf2 give a range of values of the angle of alignmésith S,

nary results in which the scheme is extended to recover get atQ.5and t.he res_ults are shown in Fig. 1. The continuous
nematic-isotropic interface. curve in the figure is a fit to Eq64) generated with the

value of the order parameter taken from the simulation data.
The change in the order parameter predicted by (Ed). is
also recovered to within less than 0.3%.

A number of simulations were undertaken in order to vali- As a final test of the algorithm, the Miesowicz viscosities
date the method described in the preceding section. All thevere measured for simulations in which the director orienta-
results were obtained using a D2Q13 lattice. tion was controlled by a strong magnetic field. Using the

In the absence of flow and in the presence of periodigparameters appropriate for MBBA the expected ratio of the
boundary conditions, the order parameter is found to be cornviscosities with the director aligned parallel and perpendicu-
sistent with the value predicted by E@2) to machine ac- lar to the direction of flow is 5.03 and this value was recov-
curacy. If an external magnetic field is applied through theered with an error of 0.1%. The expected form of the vis-

A. Validation results
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FIG. 3. Droplet of isotropic fluid embedded in a nematic matrix
%a o8 o8 3 w2 a e Iy 2 for different values of the surface tension parametemnd anchor-
o ing energyW.
FIG. 2. Viscosity in shear flow as a function ofr}/ The upper s
(lower) line is for director perpendiculaparalle) to the flow di- Tap™ a( 5aﬁ_ kakB)+W[ 5aBQ,U.Vkp,kV+ Q,uvk/.t,kvkakﬁ
rection.
—2Q.uK. K], (71

cosity is given by Eq(68) and it can be shown that this \yhereq controls the strength of the surface tensidhcon-
implies that the viscosity should be a linear function af)l/ /0|5 the anchoring energy arfd.;,L,} control the elastic
Figure 2 shows that the expected linearity is observed withionstants of the nematic. Resulf®) and(71) follow from a
the simulations; the slope to intercept ratio for each curve igyrface free energy density equivalent to that proposed by

in error by less than 0.2%. Rapini[30].
In order to generate an isotropic-nematic interface, the
B. Isotropic-nematic interface forcing introduced in Ref[28] is adapted to give a forcing

In this section we give a brief summary of a method that©F the nematic surface densities of the form
the authors are developing to model a nematic-isotropic in- N
terface. Preliminary results are presented, but a more detailed ¢i“‘aﬁ:p_saﬁ¢i3 (72)
study will be given in a forthcoming publication. Experimen- P
tal r_esults have been repo.rtéZiY] for the distqrtion of iso- and, for the isotropic surface densities,
tropic droplets embedded in a nematic matrix under the ap-
plication of a strong electric field and this is a target problem p'
for future studies. Hi=—¢7, (73
The lattice Boltzmann method has particular advantages P
in the description of the interface between two isotropic flu-yyhere
ids [6,7]. In a recent paper28], the authors proposed a
method of obtaining a surface tension at the interface be- 1
tween two isotropic fluids by introducing a forcing term on =1, bl 5o, (74)
the mixed(surface sites which is dependent on the surface Cs
curvature; the segregation of the two fluids is maintained b
the technique of Gunstens¢®9]. The method 28] signifi-
cantly reduces the microcurrents that are an artifact observed 93=(8,5— K Kz) 35 (75)
in most LB interface schemes. o MTap RanpITs
It is possible to combine the technique described in the The angular forcing term, E36), is also modified on the

earlier sections of this paper with the interface sché@®  surface sites to include a contribution from the surface mo-
to recover a nematic-isotropic interface based on the conecular field

tinuum description proposed by R¢$5,16. The lattice is
populated by an isotropic densify and a nematic density

ich gi i i i Xiap=tiP") (€ avuQput € Qap) @~ 5[ 12A
i Which give the corresponding macroscopic densiies faf T avpXpp t Epvpcan/Tv 9, HaRap
and pN. A surface unit normak, is constructed from the
gradient of the nematic density at mixed siteg,,
=4,(p"/p). The surface normal is used to calculate an elas-
tic surface molecular field

Xwith the surface gradient defined by

—2(h,s+| ¢ hiﬁ) +28,5M+2¢e,5,N,]1.  (76)

The segregation of the two fluids is achieved using the
hﬁﬁz —WKk,Kg—L1K,d,Q.5—L2K,3,Q,5 (700  method of Gunstensei29], but it is important to note that
the surface tension inducing perturbation used by Gun-
and an elastic surface stress tensor stensen is replaced by the forcing described above.
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FIG. 4. Sketch of director field fow=0.2, 0=0.4. FIG. 5. Sketch of director field fow=0.2, 0=0.8.

Figure 3 illustrates the effect of modifying the surface VII. CONCLUSIONS

tension parameter and the anchoring ener@y. The picture In this paper we have presented a generalized lattice

is a collage of nine separate si'mulati'ons with the45pecifie%0|tzmann scheme which recovers the tensor order param-
values foro andW. In all the simulationsL,;=10"" and  gter equations for a nematic liquid crystal proposed by Qian
L,=0. Each simulation was run to steady state on a 20Qnq Sheng20]. The generalized method is based on a single
%200 grid with the droplet being initialized as a disk with @ tensor density from which all the macroscopic quantities can
diameter of 48 sites. Periodic boundary conditions were imye recovered. A Chapman-Enskog analysis demonstrates that
posed with the additional constraint that the director wasne glgorithm recovers the target macroscopic equations and
aligned perpendicular to the top and bottom surfaces. Thesst simulations demonstrate that the method correctly recov-
gray scale is used to represent the direction of the director ags the evolution of the director, the order parameter, and the
seen experimentally through crossed polarizers; whitgglocity gradients in the presence of shear and magnetic
(black corresponds to the director aligned verticallyori-  fie|ds. Preliminary results have been presented for an exten-

zontally). . sion of the scheme to model a mixture of a isotropic and
It can be seen that as the surface tension parameter ematic fluids.

reduced and the anchoring strenijthis increased, the nem-
atic field significantly distorts the droplet. It can further be
seen that as the surface tension and anchoring strength are
increased, satellite defects form on each side of the droplet. We thank Dr. D. J. Cleaver for valuable conversations
Figures 4 and 5 are sketches of the director field associatatiroughout the developments described in this paper. We also
with these two cases. acknowledge helpful comments from Peter Olmsted.
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