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Generalized lattice Boltzmann algorithm for the flow of a nematic liquid crystal
with variable order parameter

C. M. Care, I. Halliday, K. Good, and S. V. Lishchuk
Materials Research Institute, Sheffield Hallam University, Pond Street, S1 1WB, United Kingdom
~Received 2 August 2002; revised manuscript received 6 March 2003; published 13 June 2003!

A lattice Boltzmann~LB! scheme is described, which recovers the equations developed by Qian-Sheng for
the hydrodynamics of a nematic liquid crystal with a tensor order parameter. The standard mesoscopic LB
scalar density is generalized to a tensor quantity and the macroscopic momentum, density, and tensor order
parameter are recovered from appropriate moments of this mesoscopic density. A single lattice Boltzmann
equation is used with a direction dependent Bhatnagar, Gross, and Krook~BGK! collision term, with additional
forcing terms to recover the antisymmetric terms in the stress tensor. A Chapman-Enskog analysis is presented,
which demonstrates that the Qian-Sheng scheme is recovered, provided a lattice with sixth-order isotropy is
used. The method is validated against analytical results for a number of cases including flow alignment of the
order tensor and the Miesowicz viscosities in the presence of an aligning magnetic field. The algorithm
accurately recovers the predicted changes in the order parameter in the presence of aligning flow, and mag-
netic, fields. Preliminary results are given for an extension of the method to model the interface between
isotropic and nematic fluids.
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I. INTRODUCTION

The lattice Boltzmann~LB! method has been extensive
studied as a mesoscopic method of simulating isotropic
ids ~e.g., Refs.@1–4#!. The strengths of the method lie i
modeling flow in complex geometries~e.g., Ref.@5#! or in
multicomponent flow~e.g., Refs.@6,7#!. Recently, a numbe
of LB schemes have been developed to represent the flo
anisotropic fluids such as liquid crystals@8,9#.

Materials that exhibit liquid crystal phases have anisom
ric molecules@10,11# and nematic liquid crystals are of pa
ticular interest because of their application in display d
vices. There is also increasing interest in modeling liq
crystal colloids in which colloidal particles are embedded
a nematic phase@12#. The colloidal particles interact throug
the distortions and defects that they generate in the nem
elastic field. The forces between the particles and the dyn
ics of their motion is accessible to experiment~cf. Poulin
et al. @13#!. As a consequence of these additional colloid
interactions, the particles rearrange themselves into
structures and the LB method provides a particularly eff
tive way of dealing with the complex boundary conditions
such problems. The method can recover both the nemato
ics and nematodynamics of these phases and hence th
namics of the colloidal phase can be captured and this
been achieved with an earlier LB method developed by
authors@8,14#.

Additionally, the colloidal particles may be an isotrop
fluid and work is currently in progress to extend the tw
phase LB algorithms that have been developed for isotro
fluids to describe a mixture in which one of the phases
nematic liquid crystal. Preliminary results from this work a
presented later in the paper and are based on extensio
the method to recover a isotropic-nematic interface follow
the macroscopic description of Rey@15,16#. The hydrody-
namics associated with pair annihilation of line defects
1063-651X/2003/67~6!/061703~10!/$20.00 67 0617
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also a matter of current interest and results have been
ported using both lattice Boltzmann@17# and conventional
solvers@18# of the equations for nematodynamics in the pre
ence of a variable order parameters.

The orientational ordering of the molecules in the nema
phase is characterized by a director field,na(x,t), a unit
vector that essentially defines the ‘‘average orientation’’
the molecules. However, the nematic ordering is more fu
characterized by a traceless and symmetric order te
Qab . In this work, for simplicity, we assume that the dire
tor is confined to a two-dimensional plane, and hence t
Qab may be written in the form

Qab~x,t !5S~2nanb2dab!. ~1!

The principal eigenvector ofQab is the director and the prin
cipal eigenvalueS(x,t) is the scalar order parameter.

The scheme proposed by Careet al. @8# to recover the
Ericksen, Leslie, and Parodi~ELP! equations@10# used two
coupled LB equations. These equations govern the c
tinuum fluid dynamics of an incompressible nematic with
order parameterS, which is both position and timeindepen-
dent. In the scheme@8#, one of the LB equations carried th
momentum and the second carried a vector density co
sponding to the director field. The Dennistonet al. @9#
scheme is also based on two coupled lattice Boltzm
schemes, one of which carries a momentum density and
second carries a tensor density from which the macrosc
order tensor can be recovered. This latter scheme reco
the Beris-Edwards equations@19# for the flow of a nematic
liquid crystal with variable order parameter.

In the work presented in this paper, a third scheme
presented that recovers the Qian-Sheng@20# equations for the
flow of a nematic liquid crystal with a variable scalar ord
parameter. The scheme is based on a single LB equation
governs the evolution of a tensor density and from wh
both the macroscopic order and momentum evolution eq
tions are recovered. It is worth noting that there have bee
number of different derivations of nematodynamics w
©2003 The American Physical Society03-1
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variable order parameters with perhaps the earliest res
presented by Hess@21# and Olmsted and Goldbart@22#. The
recent work by Sonnet, Maffettone, and Virga@23# provides
the basis upon which the variety of schemes with a varia
order parameter may be compared. The Qian-Sheng e
tions, such as the Beris-Edwards equations, reduces to
ELP formalism in the limit that the order parameter becom
independent of time and position. There are a numbe
important differences between the scheme proposed here
that of Denniston. In the scheme described here, the ta
equations are those of Qian-Sheng rather than Be
Edwards, there is a single Boltzmann equation, the equ
rium distribution function is isotropic~as is expected on
physical grounds!, and the scheme is able to recover the f
tensorial coupling of the order tensor to the velocity gradi
tensor, from a single lattice distribution function.

The target macroscopic equations of the Qian-Sh
scheme are summarized in Sec. II, the proposed schem
described in Sec. III, and a Chapman Enskog analysis of
scheme is presented in Sec. IV. A number of analytical
sults are developed from the Qian-Sheng equations in Se
which provide the basis for validation of the LB algorithm
Sec. VI A. Preliminary results for a nematic-isotropic inte
face are presented in Sec. VI B and the conclusions are
sented in Sec. VII.

II. QIAN-SHENG FORMALISM

In this section we summarize the target macrosco
equations for the LB method. The two governing equatio
of the Qian scheme are the momentum evolution equatio

rDtub5]b~2Pdab1sab
d 1sab

f 1sab8 ! ~2!

and the order tensor evolution equation

JQ̈ab5hab1hab8 2ldab2«abglg . ~3!

It is shown by Qian that in the limit of constant order para
eter, the solutions of these equations are identical to th
obtained from the ELP equations. Throughout this work
use the repeated index notation for summations over Ca
sian indices. In the above equations,Dt5] t1um]m is the
convective derivative,P is the pressure,sab

d is the distortion
stress tensor given by

sab
d 52

]FLdG

] ~]aQmn!
]bQmn , ~4!

and sab
f is the stress tensor associated with an extern

applied field. In the current work we only consider an ext
nally applied magnetic field for which the stress tensor
given by Landau and Lifshitz@24#

sab
f 52

1

4p S HaHb2
1

2
H2dabD . ~5!

The viscous stress tensorsab8 is given by
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sab8 5b1QabQmnAmn1b4Aab1b5QamAmb1b6QbmAma

1 1
2 m2Nab2m1QamNmb1m1QbmNma , ~6!

whereAab5 1
2 (]aub1]bua) is the symmetric velocity gra-

dient tensor. The elastic molecular field is given by

hab52
]FLdG

]Qab
1]m

]FLdG

]~]mQab!
, ~7!

where, in the current work, the Landau–de Gennes free
ergy is assumed to be of the form

FLdG5 1
2 ~aFQmn

2 1L1Qmn,t
2 1L2Qmn,nQmt,t!

2bFQmnQntQtm1gF~Qmn
2 !2, ~8!

whereQab,g[]g(Qab). Using this form of the free energy
and the definition of the molecular field, Eq.~7!, we find

hab5L1]m
2 Qab1L2]b]mQam2aFQab13bFQamQbm

24gFQabQmn
2 . ~9!

The quantitiesl andla in Eq. ~3! are Lagrange multipliers
that impose the constraints on the elastic molecular fie
which arise because the order tensorQab is symmetric
and traceless. For a three-dimensional system they have
values

l5 1
3 ~hmm2 1

2 m2Amm!, la5 1
2 «amnhmn . ~10!

The termAmm in the first of Eqs.~10! does not appear in the
Qian-Sheng equations, but is necessary in order to correc
the slight compressibility of the LB fluid. In the presence
an external magnetic field, the free energy is assumed to
augmented by a term of the form

FH52 1
2 ~x i2x'!QabHaHb , ~11!

which gives an additional term in the molecular field of t
form

hab
H 5 1

2 xaHaHb , ~12!

wherexa5x i2x' is the anisotropy in the susceptibility. Th
viscous molecular fieldhab8 is given by

2hab8 5 1
2 m2Aab1m1Nab , ~13!

whereNab is the corotational derivative defined by

Nab5] tQab1um]mQab2«amnvmQnb2«bmnvmQna ,

~14!

where the vorticityv5 1
2 (“3u).

In order to develop a lattice Boltzmann scheme we re
range Eq.~6! by substituting from Eq.~14! for the corota-
tional derivativeNab and obtain the form
3-2
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sab8 5b1QabQmnAmn1S b42
~m2!2

2m1
DAab

1S b51
1

2
m2DQamAmb1S b62

1

2
m2DQbmAma

1
m2

2m1
~hab2dabl2«abmlm!1Qbmhma

2Qamhmb«mbnQamln2«manQbmln . ~15!

Equation~3! for the order tensor evolution can be cast in t
form

DtQab52
m2

2m1
Aab1

1

m1
hab1eamnvmQnb1ebmnvmQna

2
1

m1
~dabl1«abmlm!, ~16!

where we have set the inertial density of the fluid,J, to zero.
Equations~15! and~16! are the expressions recovered by t
LB scheme proposed below. After each time step, the m
roscopic density, momentum, and the order tensor are re
ered from the LB tensor density. The gradients of the or
tensor are then used to construct the molecular field thro
Eq. ~9! and this modifies the dynamics through appropri
forcing terms in the LB equation.

III. THE LATTICE BOLTZMANN ALGORITHM

In order to recover both the momentum evolution Eq.~2!
and the order tensor evolution Eq.~3! within a lattice Boltz-
mann scheme, the scalar density of a standard lattice B
mann scheme,f i(r ,t), is replaced by a tensor densi
giab(r ,t), wherei is the normal velocity index anda andb
label either a two- or three-dimensional Cartesian basis.
can think of the tensor density as carrying information ab
the ordering of that population of the fluid ‘‘element’’ on th
velocity link i, associated with a particular position and tim
Hence the densities of a standard LB scheme have been
eralized to carry information about the order associated w
the fluid in addition to the density and momentum.

The densitygiab(r ,t) is assumed to have the followin
moments:

r5(
i

gimm , ~17!

rua5(
i

ciagimm , ~18!

rSab5(
i

giab , ~19!

whereSab is an order matrix with unit trace, which is relate
to Qab by

Sab5 1
2 ~Qab1dab!, ~20!
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which in two dimensions is related toQab by Eq. ~20!. The
LB algorithm governing the evolution ofgiab is taken to be
of the form

giab~r 1dci ,t1d!5giab~r ,t !1(
j

gj mn
(neq)~r ,t !Miab j mn

1f iab1x iab , ~21!

wheref iab andx iab are the forcing terms for the momen
tum and order, respectively, and there is an implicit summ
tion over repeated Cartesian indices. The nonequilibrium
tribution function is given by

giab
(neq)5giab2giab

(0) , ~22!

where the equilibrium distribution functiongiab
(0) is taken to

be of the form

giab
(0) 5Sab f i

(0) . ~23!

The distribution functionf i
(0) is assumed to be second ord

in the velocityua and is determined in the usual way, by th
requirements

r5(
i

f i
(0) , rua5(

i
cia f i

(0) , ~24!

and Galilean invariance in the form

(
i

ciacibgiab
(0) 5cs

2rdab1ruaub . ~25!

Hence, we have

(
i

giab
(0) 5rSab , (

i
ciagiab

(0) 5rSabua . ~26!

In Sec. IV, it is shown that in order to recover the requir
tensor coupling of the order tensor to the velocity gradi
tensor it is necessary to have sixth order isotropy of the
locity tensors. In this work, the required isotropy is achiev
by using a two-dimensional hexagonal lattice with thr
speeds and coordination number 13~D2Q13! for which the
velocity vectorscp are given by

c05$0,0%,

c15c$61,0%,c$61/2,6A3/2%,

c25c$0,6A3%,c$63/2,6A3/2%, ~27!

the subscripts 0, 1, and 2 being associated with particles
velocity 0, c, and A3c, respectively. Imposing condition
~24! and ~25! leads to the result

giab
(0) 5rSabt iF11

1

cs
2

uacia1
1

2cs
2

uaubS ciacib

cs
2

2dabD G ,

~28!
3-3
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where, in D2Q13,t0511/25,t159/100, andt251/300 and
the velocity of soundcs5(3/10)1/2. The collision operator is
taken to be of the form

Miab j mn5damdbnF2
d i , j

t j
1

d i0

t j
1

t ici«cj «

cs
2 S 1

t j
22D G ,

~29!

where thedirection dependentrelaxation parameter is de
fined to be

t i5t0~11h0cimcindmn1h2cimcinQmn!. ~30!

This collision operator may be seen more transparently a
performing the contraction with the nonequilibrium distrib
tion function as in Eq.~21!

(
j mn

Miab j mngj mn
(neq)52

giab
(neq)

t i
1dmiab1dpiab , ~31!

where

dmiab5d i0(
j

gj ab
(neq)

t j
~32!

is a correction to conserve mass. The term

dpiab5
t ici«

cs
2 (

j
cj «gj ab

(neq)S 1

t j
22D ~33!

includes a term in 1/t j , which is a correction to conserv
momentum and a term associated with a factor22, which is
explained at the end of Sec. IV A. The collision operator
essentially a lattice Bhatnagar-Gross-Krook~LBGK! colli-
sion operator~e.g., Ref.@2#! with a relaxation time that is
direction dependent. When written in the matrix form, t
collision operator is seen to lie between a conventio
LBGK operator and a linearized lattice Boltzmann sche
~e.g., Ref.@25#! although the usual circulant properties of t
matrix associated with an isotropic fluid are destroyed by
direction dependent scattering in the method presented h

The momentum forcing term is given by

f iab5t iSabcim]nFnm , ~34!

where

Fab52
1

cs
2 S 2

m2~hab2«abmlm!

2m1
1Qam~hmb2«mbnln!

2Qbm~hma2«manln!2sab
d 2sab

f D ~35!

and the angular forcing term is given by

x iab5t ir@~«anmQbm1«bnmQam!vn#2
t ir

2m1
@m2Aab22hab

12dabl12«abmlm#. ~36!
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IV. ANALYSIS OF THE ALGORITHM

A. Chapman-Enskog expansion

In this section the key results of the Chapman-Ensk
analysis are given, which demonstrate how the scheme
scribed in Sec. II can be recovered from the LB algorith
described in Sec. III. We follow a standard Chapman-Ens
analysis@2# and expand the density and the time derivativ
in the form

giab5 (
n50

`

dngiab
(n) , ~37!

] t5 (
n50

`

dn] t,n . ~38!

We assume for the purposes of the following analysis that
forcing termsf iab andx iab can both be introduced at orde
O(d2) since both include gradient terms in both the veloc
and director field~cf. Ref. @8#!. The choice is supported b
the agreement of the Chapman-Enskog analysis with
measured simulation data; however the assumption re
upon assumptions implicit in LB hydrodynamics in gener
Accordingly, it requires more careful analysis, which will b
undertaken in a later work.

The Chapman-Enskog expansion gives toO(d)

] t,0giab
(0) 1cim]mgiab

(0) 5(
j

gj mn
(1) Miab j mn ~39!

and toO(d2)

] t,1giab
(0) 1~] t,01cim]m!S giab

(1) 1
1

2 (
j

gj mn
(1) Miab j mnD

5(
j

gj mn
(2) Miab j mn1f iab1x iab . ~40!

We now take moments of Eqs.~39! and ~40! in order to
recover the macroscopic equations to which the algorithm
equivalent. If we sum the two equations over indexi, take
the trace of the distribution density, and sum the result
equations, we recover

~] t,01] t,1!r1]m~rum!50, ~41!

which is the continuity equation to second order. If we m
tiply Eqs. ~39! and ~37! by cin , sum over indexi, take the
trace of the distribution density, and sum the resulting eq
tions, we recover

~] t,01] t,1!~rua!1]mS Pam
(0)1Pam

(1)1
1

2
Vam

(1)D5cs
2]mFma ,

~42!

where

Pab
(n)5(

i
ciacibgimm

(n) ~43!
3-4
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and

Vab
(n)5(

i j
gj mn

(n) ciacibMikk j mn . ~44!

Further progress can be made by noting that, toO(u), the
lowest-order equation~39! can be written in the form

t iS cimcin

cs
2

2dmnD ]m~rSabun!5(
j

gj mn
(1) Miab j mn . ~45!

Substituting into Eq.~44!, this yields the result

Vab
(1)5(

i
t iciacibS cimcin

cs
2

2dmnD ]m~run!, ~46!

where the unit trace property ofSab has been used. In orde
to obtain an expression forPab

(1) , we use Eqs.~31! and ~45!
to give, to first order in the velocity,

giab
(1) 52t iF t iS cimcin

cs
2

2dmnD ]m~rSabun!2dmiab2dpiabG ,

~47!

where we have made the approximation, correct toO(d2),
thatgiab

(neq).giab
(1) . Termdmia does not contribute toPab

(1) , as
can be seen from Eq.~43!, since it is included in the res
mass. It can further be shown that the contribution from
term dpiab is essentially zero. We, therefore, find

Pab
(1)52t0(

i
t iciacib~11h0cimcindmn1h2cimcinQmn!

3F S ci tci«

cs
2

2dt«D ]t~ru«!G , ~48!

where we have substituted for the anisotropic relaxation
rametert i . Assuming that the velocity tensors

Ea1•••an

(n) 5(
i

t icia1
•••cian

~49!

are isotropic up to sixth order, we recover the required fo
of the tensor coupling between the order tensor and the
locity gradient tensor.

Using these results it can be shown that, apart from
term associated withb1, the required momentum evolutio
equation~2! is recovered when Eq.~35! is used as the mo
mentum forcing term. The term inb1 could be recovered by
including a fourth-order velocity product in the anisotrop
relaxation parameter but this would require the velocity t
sors to be isotropic to eighth order. However, for simplici
the term in b1 is omitted in the results presented in th
paper.

The order tensor evolution equation is recovered fr
Eqs.~39! and ~40! by summing over indexi and adding the
two resulting equations to give
06170
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] t,0~rQab!1] t,1~rQab!1]g~rQabug!5(
i

x iab .

~50!

Equation~50! combined with the forcing term~36! gives the
required evolution equation~3!. However, in order to obtain
the result~50! it is necessary to suppress a contribution of t
form

]gS (
i

ciggiab
(1) D ~51!

at second order in the Chapman-Enskog analysis and th
achieved using the term associated with the factor22 in Eq.
~33!.

The term ~51! arises because conservation of mass a
momentum alone are insufficient to constrain all the fir
order elements of the distribution function. This arises b
cause in order to recover the required macroscopic equati
the form of the equilibrium distribution function must satis
Eqs.~26!. However, the limitations on the definitions of th
moments of the distribution function lead to the result

(
i

ciggiabÞrSabug ~52!

and, as a consequence, the argument of the derivative in
~51! is nonzero.

B. Choice of LB parameters

The following correspondence is found between the
rameters of the LB algorithm and the parameters of the ta
scheme:

b45
m2

2

4m1
2rcs

2~122t0z!,

b552
m2

2
1h2rt0cs

2 ,

b65
m2

2
1h2rt0cs

2 , ~53!

where parameterz511h0(11d/4) with d being the dimen-
sionality of the LB scheme, which is taken to be 2 for t
results presented in Sec. VI. The viscosity s
$b4 ,b5 ,m1 ,m2% of the Qian scheme is recovered from th
parameter set$t0 ,h0 ,h2 ,m1 ,m2% of the LB algorithm. We
note from Qian@20# that b62b55m2 and this is seen to be
consistent with the last two of Eqs.~53!. There is one free
parameter in the LB scheme since we require to recover o
four Qian parameters from five LB parameters. The free
rameter is taken to beh0 which is adjusted to place the LB
scheme in a stable region of its parameter space, as is
plained below.

Equations~53! can be inverted to give
3-5
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h252
4m1z~2b51m2!

m2
224m1~b41rcs

2!
,

t05

4b414rcs
22

m2
2

m1

8rcs
2z

. ~54!

In the absence of any anisotropic terms, the last expressio
Eq. ~54! becomesb4 /r5cs

2(122t0), which is equivalent to
the standard result for the kinematic viscosity in an LBG
scheme. The relationship between the Qian parame
$b4 ,b5 ,m1 ,m2% and the standard Leslie coefficients is giv
in Sec. V.

We now establish an approximate criterion for the sta
ity of the LB algorithm by considering a system that
evolving towards a uniform density and velocity distributio
at all points. The algorithm involves repeated application
the collision operatorMiab j mn[M and ignoring forcing

terms, the nonequilibrium part of the distribution function
transformed at each time step according to the symb
equation

g(neq)→~11M !g(neq). ~55!

In order for the nonequilibrium part to decay to zero und
successive applications of Eq.~55!, it is necessary that

21,~11M ! iab j mn,1 ~56!

for all choices of indices. This equation may be recast as
stability criteria

22,M (Diag),0, uM (O f f Diag)u,1. ~57!

However, it should be remembered that the matrixM is a

function of position, as a consequence of its dependenc
the order tensor through the anisotropic relaxation param
t i . Hence, in a given simulation, conditions~57! cannot be
guaranteed under all flow conditions. The criteria have b
achieved in the implementation of the algorithm described
Sec. VI by explicit evaluation of all the nonzero elements
the collision matrix prior to running the algorithm and aft
making appropriate assumptions about the ordering in
system. Parameterh0 is then chosen to ensure that cond
tions ~57! are satisfied for all possible values of the direc
and scalar order parameter.

V. ANALYTICAL RESULTS FROM THE QIAN
FORMALISM

In this section we quote without detailed proof some a
lytical results that can be derived from the Qian formalis
and that will be used in Sec. VI to validate the algorith
Further discussion of the results and their significance is
ing prepared for a future publication. The results quoted
Sec. VI have been derived for a system in which the direc
is confined to lie in a two-dimensional plane and the or
tensor for such a system may be written in the form
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Qab5S~2nanb2dab!, ~58!

where the time and position dependent quantitiesS and na
are the order parameter and director. If form~58! is substi-
tuted into the free energy expression~8! and all the time and
spatial derivatives are removed, we find that the equilibri
Landau–de Gennes free energy in the presence of a uni
magnetic field is given by

FLdG
(equ)5aFSH

2 14gSH
4 2 1

2 SHxaHa
2 , ~59!

where it is assumed that the director is parallel to the m
netic field. The equilibrium order parameter, which min
mizes Eq.~59!, has the form

SH5S11S2 ~60!

with

S65
1

12S 27xaH2

g
63A3A8aF

3127gxa
2H4

g3 D 1/3

, ~61!

where the free energy parametera will be negative in the
nematic phase and we choose the real solutions ofS0. In the
limit H→0, we have

S05
1

2
A2aF

2g
, ~62!

which is the equilibrium order parameter that effective
minimizes the Landau–de Gennes free energy in the abs
of director gradients. Using Eq.~58! with S set to S0, we
may follow the arguments given in Appendix B of Qian
determine the relationship between the Leslie coefficients
a material and the viscosity coefficients used in the Q
scheme. It is found for a system with the order tensor giv
by Eq. ~58!

b15a1 /~4S0
2!, b45~1/2!~2a41a51a6!

b55a5 /~2S0!, b65a6 /~2S0!

m15~a32a2!/~8S0
2!, m25~a21a3!/~2S0!, ~63!

where S0 is the order parameter defined by Eq.~62!. In
simple shear flow between two parallel plates and in
absence of any external field, Eq.~3! for the evolution of the
order tensor can be solved to find the steady state valu
the angle of orientation and the order parameter. In the ce
of the flow, remote from the walls, the gradients in the ord
tensor may be ignored and the director is found to lie at
angleu with respect to the flow velocity, where

cos~2u!52
4Sm1

m2
~64!

and this is directly equivalent to the result found for the E
equations, cos(2u)52g1 /g2 @10#. The order parameter is als
modified in shear flow and is given by the solution of t
cubic equation
3-6
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ax31bx21cx1d50, ~65!

wherex5S2 and

a51024g2, b5256ag

c516@a21~m1]yux!
2#, d52~m2]yux!

2. ~66!

This equation may be solved and to first order in the veloc
gradient the order parameter is found to be

S5S01
Am2

2216S0
2m1

2

8uaFu
u]yuxu ~67!

and hence the order parameter increases as a conseque
flow alignment. Finally we consider the Miesowicz viscos
ties in a system with a variable order parameter. The st
tensor evolution equation can be solved for a simple sh
flow in the presence of a strongly aligning external field.
the director is given by$nx ,ny%, the associated Miesowic
viscosityhe f f is given by

he f f5
1

4S0
2 $S0

2@2a41a51a6#1S2@a32a214a1nx
2ny

2#

1SS0@a6~2nx
221!1~a21a3!~nx

22ny
2!

1a5~2ny
221!#%, ~68!

where S is the order parameter in the flow andS0 is the
equilibrium value of the order parameter defined in Eq.~62!.
In the limit that the order parameter is fixed~i.e.,S5S0), Eq.
~68! reduces to the standard results

hpar5
1
2 ~a41a31a6!,

hperp5
1
2 ~a42a21a5!, ~69!

where hpar and hperp correspond to the director bein
aligned parallel,n5$1,0% and perpendicular,n5$0,1%, to the
flow. In the presence of both a velocity gradient and a stro
aligning field, the change in the order parameter is do
nated by the aligning field and is hence given to a go
approximation by Eqs.~60! and ~61!.

VI. RESULTS

In this section we first present results that validate
proposed scheme and conclude by presenting some pre
nary results in which the scheme is extended to recove
nematic-isotropic interface.

A. Validation results

A number of simulations were undertaken in order to va
date the method described in the preceding section. All
results were obtained using a D2Q13 lattice.

In the absence of flow and in the presence of perio
boundary conditions, the order parameter is found to be c
sistent with the value predicted by Eq.~62! to machine ac-
curacy. If an external magnetic field is applied through
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introduction of a molecular field term of form~12!, it is
found that the director becomes fully aligned with the ext
nal field and that the order parameter follows Eq.~60! with
an accuracy of better than 0.1%. These two results con
that the free energy correctly controls the dynamical eq
tions through the associated molecular field. In princip
therefore, the effects of temperature could be introduced
the model through the coefficients in the Landau–de Gen
free energy.

The angle of alignment of the director in a shear flow
the absence of an external magnetic field is given by
~64!. In order to test that the technique recovered this res
simulations were run with the free energy parameters (aF
520.0512, bF50, gF50.01), chosen to give an equilib
rium order parameter of 0.8 and the parametersL1
50.001, L250) selected to give nematic elastic behav
equivalent to the one constant approximation. The LB
rameters were chosen to be (t051.1000, h050.3036, h2
50.1565, m150.3823, m2521.261, r51.8). If the order
parameterS0 is assumed to be 0.8, these values recover
viscosity ratios (a2 /a4520.9556, a3 /a4520.0144,
a5 /a450.5565, a6 /a4520.4135), which are consisten
with methoxy-benzylidene butyl-aniline~MBBA ! at 25 °C
@26#.

With this choice of parameters, the angle of rotation of t
director is predicted to be 7° and this is recovered to
accuracy of less than 1%. The parameters were then adju
to give a range of values of the angle of alignment~with S0
set at 0.5! and the results are shown in Fig. 1. The continuo
curve in the figure is a fit to Eq.~64! generated with the
value of the order parameter taken from the simulation d
The change in the order parameter predicted by Eq.~67! is
also recovered to within less than 0.3%.

As a final test of the algorithm, the Miesowicz viscositi
were measured for simulations in which the director orien
tion was controlled by a strong magnetic field. Using t
parameters appropriate for MBBA the expected ratio of
viscosities with the director aligned parallel and perpendi
lar to the direction of flow is 5.03 and this value was reco
ered with an error of 0.1%. The expected form of the v

FIG. 1. Director orientationu in a shear flow as a function o
m2 /m1. The continuous curve is cos(2u)524Sm1 /m2.
3-7
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cosity is given by Eq.~68! and it can be shown that thi
implies that the viscosity should be a linear function of 1/t0.
Figure 2 shows that the expected linearity is observed wi
the simulations; the slope to intercept ratio for each curv
in error by less than 0.2%.

B. Isotropic-nematic interface

In this section we give a brief summary of a method th
the authors are developing to model a nematic-isotropic
terface. Preliminary results are presented, but a more det
study will be given in a forthcoming publication. Experime
tal results have been reported@27# for the distortion of iso-
tropic droplets embedded in a nematic matrix under the
plication of a strong electric field and this is a target probl
for future studies.

The lattice Boltzmann method has particular advanta
in the description of the interface between two isotropic fl
ids @6,7#. In a recent paper,@28#, the authors proposed
method of obtaining a surface tension at the interface
tween two isotropic fluids by introducing a forcing term o
the mixed~surface! sites which is dependent on the surfa
curvature; the segregation of the two fluids is maintained
the technique of Gunstensen@29#. The method@28# signifi-
cantly reduces the microcurrents that are an artifact obse
in most LB interface schemes.

It is possible to combine the technique described in
earlier sections of this paper with the interface scheme@28#
to recover a nematic-isotropic interface based on the c
tinuum description proposed by Rey@15,16#. The lattice is
populated by an isotropic densityf i and a nematic density
giab which give the corresponding macroscopic densitiesr I

and rN. A surface unit normalka is constructed from the
gradient of the nematic density at mixed sites,fa
5]a(rN/r). The surface normal is used to calculate an el
tic surface molecular field

hab
S 52Wkakb2L1km]mQab2L2ka]mQmb ~70!

and an elastic surface stress tensor

FIG. 2. Viscosity in shear flow as a function of 1/t0. The upper
~lower! line is for director perpendicular~parallel! to the flow di-
rection.
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S 5s~dab2kakb!1W@dabQmnkmkn1Qmnkmknkakb

22Qamkmkb#, ~71!

wheres controls the strength of the surface tension,W con-
trols the anchoring energy and$L1 ,L2% control the elastic
constants of the nematic. Results~70! and~71! follow from a
surface free energy density equivalent to that proposed
Rapini @30#.

In order to generate an isotropic-nematic interface,
forcing introduced in Ref.@28# is adapted to give a forcing
for the nematic surface densities of the form

f iab
N 5

rN

r
Sabf i

S ~72!

and, for the isotropic surface densities,

f i
I5

r I

r
f i

S , ~73!

where

f i
S5

1

cs
2

t icimufu]n
Ssnm

S ~74!

with the surface gradient defined by

]a
S5~dab2kakb!]b. ~75!

The angular forcing term, Eq.~36!, is also modified on the
surface sites to include a contribution from the surface m
lecular field

x iab5t ir
NH ~«anmQbm1«bnmQam!vn2

1

2m1
@m2Aab

22~hab1ufuhab
S !12dabl12«abmlm#J . ~76!

The segregation of the two fluids is achieved using
method of Gunstensen@29#, but it is important to note tha
the surface tension inducing perturbation used by G
stensen is replaced by the forcing described above.

FIG. 3. Droplet of isotropic fluid embedded in a nematic mat
for different values of the surface tension parameters and anchor-
ing energyW.
3-8
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Figure 3 illustrates the effect of modifying the surfa
tension parameters and the anchoring energyW. The picture
is a collage of nine separate simulations with the speci
values fors and W. In all the simulations,L151024 and
L250. Each simulation was run to steady state on a 2
3200 grid with the droplet being initialized as a disk with
diameter of 48 sites. Periodic boundary conditions were
posed with the additional constraint that the director w
aligned perpendicular to the top and bottom surfaces.
gray scale is used to represent the direction of the directo
seen experimentally through crossed polarizers; w
~black! corresponds to the director aligned vertically~hori-
zontally!.

It can be seen that as the surface tension parameters is
reduced and the anchoring strengthW is increased, the nem
atic field significantly distorts the droplet. It can further b
seen that as the surface tension and anchoring strengt
increased, satellite defects form on each side of the dro
Figures 4 and 5 are sketches of the director field associ
with these two cases.

FIG. 4. Sketch of director field forW50.2, s50.4.
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VII. CONCLUSIONS

In this paper we have presented a generalized lat
Boltzmann scheme which recovers the tensor order par
eter equations for a nematic liquid crystal proposed by Q
and Sheng@20#. The generalized method is based on a sin
tensor density from which all the macroscopic quantities c
be recovered. A Chapman-Enskog analysis demonstrates
the algorithm recovers the target macroscopic equations
test simulations demonstrate that the method correctly rec
ers the evolution of the director, the order parameter, and
velocity gradients in the presence of shear and magn
fields. Preliminary results have been presented for an ex
sion of the scheme to model a mixture of a isotropic a
nematic fluids.
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FIG. 5. Sketch of director field forW50.2, s50.8.
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